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Accurate measurements of Stokes IQUV in spectral lines is required forprecise reconstruction of stellar magnetic field
geometries with Zeeman-Dopper imaging. Spectral Zeeman features are intrinsically weak and subjected to a number
of instrumental uncertainties. The aim of this work is to study the details of the instrumental uncertainties in the Stokes
IQUV measurements in spectral lines and ways of their reduction. We make a practical comparison of the polarimetric
performances of two high-resolutiońechelle spectropolarimeters, namely SOFIN at the NOT, and HARPS at ESO. We
show the residual spectra for both instruments to characterize the cross-talk between the observed Stokes parameters. We
employ a self-calibrating least-squares fit to eliminate some of the polarization uncertainties to derive the full Stokes vector
from stellar spectra.
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1 Introduction

Spectropolarimetry is a tool to measure the polarization
state of the emitted light versus wavelength. As a relatively
novel area in astronomy, it was mainly confined in the past
to measure the Zeeman splitting in spectral lines versus ro-
tational phase of the star in order to estimate the mean longi-
tudinal magnetic field and infer the distribution of the mul-
tipole magnetic field (e.g. Mathys 1989).

With the advent of the Zeeman-Doppler Imaging tech-
nique (Donati & Brown 1997; Piskunov & Kochukhov
2002; Carroll et al. 2007) and its first applications to mag-
netic Ap and late-type stars it became possible to spatially
resolve a complex structure of the stellar magnetic field dis-
tribution and its association with the surface elements of
these stars. This opened up new ways in interpretation and
characterization of the origin of the stellar magnetic fields
and its role in stellar activity and evolution.

Recent instrumentation developments resulted in de-
ployment of new high-resolution spectropolarimeters at-
tached to different telescopes but of the same 3.6 m in size:
ESPaDOnS at CFHT (Donati et al. 2006), SARG at TNG
(Leone et al. 2003), and HARPS at ESO (Snik et al. 2011).
Due to the moderate size of these telescopes, their measure-
ments are mainly bound to StokesV due to photon noise.
The currently developed instruments are for larger tele-
scopes and include the PEPSI spectropolarimeter (Strass-
meier et al. 2008; Ilyin et al. 2011) at the2 × 8.4 m Large
Binocular Telescope, and a spectropolarimeter for the 39 m
ESO European Extremely Large Telescope (Kochukhov &
Piskunov 2008; Strassmeier 2011) which would allow solar-
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class ultra-high accuracy in measurements of Stokes param-
eters in spectral lines in terms of photon noise and spectral
resolution.

The aim of this paper is to elaborate in detail the un-
certainties associated with the measurements of the Stokes
parameters with a polarimeter consisting of a retarder and
polarizing beam-splitter. A number of papers were al-
ready dedicated to this subject with application to imag-
ing and spectroscopic polarimeters (e.g. Eversberg et al.
1998; Keller 2002; del Toro Iniesta 2005; Patat & Ro-
maniello 2006; Bagnulo et al. 2009; Clarke 2010). In this
work though, we mainly concentrate on the description of
the cross-talk between Stokes parameters due to differen-
tial transmission in the polarized beam-splitter (specifically
a Foster prism), as well as due to deviations in the angles of
the polarization optical elements. External effects also cause
an increase of instrumental polarization, e.g. seeing, tele-
scope and focal fore-optics or spectrograph wavelength sta-
bility but are beyond our considerations here (e.g. detailed
in Clarke 2010, p. 127).

The paper is organized as follows. In Sect. 2 we briefly
outline the Mueller matrices for the polarization elements
we use in the subsequent Sect. 3 where we combine the re-
sults and derive the polarization modulation function. We
show in Sect. 3.3 how the differential transmission of a Fos-
ter prism results in the cross-talk between StokesI and
QUV . By using Taylor series expansion up to second de-
gree of the modulation function versus polarization ele-
ments angles in Sect. 4, we concentrate on three polarimet-
ric configurations (no retarder, half-wave and quarter-wave
retarder). In Sect. 5 we discuss various polarimetric calibra-
tion procedures and the way they applied. In Sect. 6 we eval-
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Fig. 1 An elliptically polarized monochromatic and coherent
wave is propagating along axisz vertically from the picture plane
(from the light source to the observer) in a right-hand Cartesian
3D coordinate system. The projection of the wave to thexy-plane
makes an ellipse. Thex-axis is oriented along the great circle pass-
ing through the light source and the North celestial pole.

uate the double-ratio method in terms of the above consider-
ations. Finally, we use polarimetric spectra from the SOFIN
(after a brief introduction) and HARPS spectrographs to
show the residual terms of the polarimetric data reduction.

2 Preliminaries

2.1 Stokes vector of polarized light

A monochromatic and coherent electromagnetic plane wave
can be described (Born & Wolf 2002, p. 25) as a composi-
tion of the following projections in a right-hand Cartesian
coordinate system:










Ex = ax cos(ωt + δx)

Ey = ay cos(ωt + δy)

Ez = 0,

(1)

which defines the amplitudesEx, Ey and Ez along each
axis versus timet for the given wave amplitudesax anday,
angular frequencyω, and the wave phasesδx andδy. The
resulting vector(Ex, Ey) follows, in general, to an ellipse
in thexy-plane whose major axis spans the angleχ with the
axisx.

The angleχ is called the polarization (or azimuthal) an-
gle (Fig. 1) and is counted anticlockwise in the directionop-
posite to the wave propagation axisz, i.e. as viewed from
the observer towards the light source (Born & Wolf 2002, p.
29). It is conventional to orient axisx along an invariant di-
rection, e.g., the great circle passing through the light source
and the North celestial pole along the declination axis in the
equatorial coordinate system (a detailed discussion of this
subject is given in Clarke 2010, p. 71). The polarization an-
gle is defined in the range0 ≤ χ ≤ π.

The phase differenceδ = δy − δx results in the rotation
of the end of the electric vector: in case0 < δ < π the

rotation is clockwise as the wave propagates from the light
source to the observer and is calledright-hand polarization.
In case−π < δ < 0 the rotation is anticlockwise and is
called theleft-hand polarization.

The ellipticity angleβ of the polarization ellipse equals
to the ratio of the electric vector amplitudes along the minor
and major axes. Naturally, it varies from0 in the case of
linearly polarized light up to±π/4 for circularly polarized
light.

The polarization radiation can be conveniently written
in terms of the Stokes parameters (e.g. Born & Wolf 2002,
p. 31 and Chandrasekhar 1950). A vectors, which charac-
terizes the wave amplitudes(ax, ay) and the phase shiftδ,
as well as the parameters of the polarization ellipse in terms
of the total wave intensitya, ellipticity β, and the orienta-
tion angleχ is then given as:

s=













I

Q

U

V













=













a2
x + a2

y

a2
x − a2

y

2axay cos δ

2axay sin δ













=













a2

a2 cos 2β cos 2χ

a2 cos 2β sin 2χ

a2 sin 2β













. (2)

It is useful to note that for polarized light the squared sum
of the last three independent Stokes parameters,

I2 = Q2 + U2 + V 2, (3)

is the total intensity of the lightI, whereasQ is the inten-
sity difference between the horizontala2

x and the verticala2
y

components of the polarized light, andU is the same but
with the coordinate system turned byπ/4, andV describes
the direction of the rotation of the electric vector.

– The linearly polarized light is characterized by the two
componentsEx and Ey which are always in phase
(δ = 0) but each of them have different amplitudesax

anday.
– The right-hand circularly polarized light occurs when

the two components have the phase shiftδ = +π/2 and
equal intensities while the left-hand circular polarization
hasδ = −π/2.

– A constant phase shift and non-equal amplitudes result
in elliptically polarized light.

– Random phase shifts and amplitudes result in un-
polarized light withQ = U = V = 0 as the result of
averaging in time, except for the total intensityI 6= 0.

– Weakly polarized light results in a random distribution
around some value of phase shifts and amplitudes. The
total intensity is in inequalityI2 ≥ Q2 + U2 + V 2.

The ellipticity angle, the polarization (azimuthal) axis,and
the phase difference are given as:

tan 2β =
V

√

Q2 + U2
, tan 2χ =

U

Q
, tan δ =

V

U
.

The plane wave intensities are given by

a2
x =

I + Q

2
and a2

y =
I − Q

2
. (4)
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2.2 Rotation of the Stokes vector

The rotation of thexy-coordinate system anticlockwise
with an angleφ results in the reduction of the azimuthal
angleχ in the rotated coordinate systemχ′, i.e. by intro-
ducingχ′ = χ−φ and substituting it into (2) we readily get
the transformation of the Stokes parameters into the rotated
coordinate system:

s′ = R(φ) · s (5)

with the rotation matrix

R(φ) =











1 0 0 0

0 cos 2φ sin 2φ 0

0 − sin 2φ cos 2φ 0

0 0 0 1











. (6)

2.3 Phase delay of the Stokes vector

An additional phase shiftτ between two components of the
wave is introduced to theEy component which then propa-
gates slower with respect toEx, i.e.(δy + τ)− δx = δ + τ .
The Stokes vector with such a phase delay is

s′ = S(τ) · s (7)

to have the transformation matrix is obtained after expan-
sion of (2) for the new phase differenceδ + τ :

S(τ) =











1 0 0 0

0 1 0 0

0 0 cos τ − sin τ

0 0 sin τ cos τ











. (8)

2.4 Retarders

A number of different types of designs for the optical retar-
dation plates and their merits are detailed in Bennett (1995),
as well in many other optics textbooks (e.g. Hecht 2002).
Here we are interested in the Stokes vector transformation
for a retarder with the fast axis oriented on angleφ with
respect to the reference polarization axisx. The transfor-
mation of the Stokes vectors involves the rotation of the
Stokes vector onto the fast optic axis of the optical retarder,
the phase delay, and the de-rotation of the vector back to the
original coordinate systemxy:

s′ = R(−φ) · S(τ) · R(φ) · s = A(φ, τ) · s. (9)

There the retarder matrix becomes

A(φ, τ) =











1 0 0 0

0 A22 A23 A24

0 A32 A33 −A34

0 −A42 A43 cos τ











(10)

with the elements (e.g. similar to Collet 1993, p. 82):

A22 = cos2 2φ + sin2 2φ cos τ
A33 = sin2 2φ + cos2 2φ cos τ
A32 = A23 = sin 2φ cos 2φ (1 − cos τ)
A42 = A24 = sin 2φ sin τ
A34 = cos 2φ sin τ.

(11)

Note that for the retarder with zero phase delayτ = 0 (i.e.
no retarder) the polarization matrix equals to the identity
matrixA(0, 0) = I. The half-wave retarderτ = π turns the
polarization plane at angleχ to the new orientation2φ − χ
and reverses the sign of the circular polarizationV . The
quarter-wave retarderτ = π/2 transforms circularly po-
larized light into linearly polarized light and vice verse.

2.5 Transmission of the Stokes vector

Polarizing beam splitters separate incident light into twoor-
thogonally polarized beams. Usually, a combination of one
or two uniaxial birefringent materials (e.g. calcite) witha
specific orientations of the optic axes is employed. This
is in order to make use of the birefringence effect for the
spatial separation of the polarized beams (Bennett 1995).
Each polarized beam is characterized by the maximal trans-
mittance coefficientT1 along its polarization plane and by
the minimal transmittance coefficientT2 for the orthogo-
nal plane. Ideally, the transmittance coefficientsT1 andT2

for the two emerged beams should be the same. In reality
though, the emerged beams become slightly elliptically po-
larized, due to numerous imperfection factors in the bire-
fringent medium or manufacturing and polishing misalign-
ment of the optic axis (Bennett 1995, p. 3.15). Moreover,
in the prisms where the total internal reflection is used to
separate the beams, the effect of multiple beam interference
is present in the straight-through beam resulting in a back
reflection and contamination of the other beam which be-
comes elliptically polarized. Therefore, we shall consider
separate transmission coefficients for each beam.

For an elementary plane wave with incident amplitudes
ax, ay and axisx oriented along the optic axis of the bire-
fringent, the transmitted amplitudes of the beam are:






(a+
x )2 = T+

1 a2
x

(a+
y )2 = T+

2 a2
y

and







(a−
x )2 = T−

2 a2
x

(a−
y )2 = T−

1 a2
y.

. (12)

The wave has a polarization plane parallel to the optic
axis of the birefringent (“+” alongx or e-beam) and for the
other beam which has a polarization plane perpendicular to
the optic axis (“−” along y or o-beam). In the case of a
polarizer, the second component(a−

x , a−
y ) is absorbed and

its elements are zeroed. The resulting Stokes vectors for the
two orthogonal beams are

s+ =















T+
1 a2

x + T+
2 a2

y

T+
1 a2

x − T+
2 a2

y

2
√

T+
1 T+

2 axay cos δ

2
√

T+
1 T+

2 axay sin δ















(13)
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and

s− =















T−
2 a2

x + T−
1 a2

y

T−
2 a2

x − T−
1 a2

y

2
√

T−
1 T−

2 axay cos δ

2
√

T−
1 T−

2 axay sin δ















. (14)

Comparing it with (2), and using (4), the transformation of
the Stokes vector is

s± = T (T±
1 , T±

2 ) · s (15)

with the transmission matrix

T (T±
1 , T±

2 ) =













A± ±B± 0 0

±B± A± 0 0

0 0 C± 0

0 0 0 C±













(16)

and the new notations

A± =
T±

1 + T±
2

2
, B± =

T±
1 − T±

2

2
,

C± =

√

T±
1 T±

2 .

(17)

This satisfiesA2 = B2 + C2 and the relative transmittance
ratio isF± = B±/A± for each of the two beams.

2.6 Polarizing the Stokes vector

The transformation of the Stokes parameters transmitted
through a rotating polarizing beam splitter can be written
as a product of three matrices:

s± = R(−ψ) · T (T±
1 , T±

2 ) · R(ψ) · s =

B(T±
1 , T±

2 , ψ) · s,

(18)

where the angleψ is the angle between the optic axis of the
polarizing beam splitter and the reference azimuthal axis
x. If the first rotation matrixR(ψ) describes the vector
transformation onto the inclined principal axis of the polar-
izer, then the transmission matrixT (T±

1 , T±
2 ) describes the

change of the vector for the two transmitted beams, while
the last operator de-rotates the vector back to the original
(reference) coordinate system. The matrix multiplications
result in (we omit± in everyA, B, andC):

B(T±
1 , T±

2 , ψ) =











A B12 B13 0

B21 B22 B32 0

B31 B32 B33 0

0 0 0 C











, (19)

with its elements

B22 = A cos2 2ψ + C sin2 2ψ
B33 = A sin2 2ψ + C cos2 2ψ
B32 = B23 = (A − C) sin 2ψ cos 2ψ
B12 = B21 = ±B cos 2ψ
B31 = B13 = ±B sin 2ψ.

(20)

As before, the “+” sign indicates the transmitted beam
whose polarization plane is parallel to the principal (optic)
axis of the birefringent, and “−” indicates the transmitted
beam with the polarization plane perpendicular to the optic
axis.

Turning the birefringent to90◦ exchanges the above cor-
respondence, i.e.s± → s∓. Note thatB(T±

1 , T±
2 , 0) =

T (T±
1 , T±

2 ).
For an ideal beam splitter withT1 = 1, andT2 = 0, and

oriented along axisx (ψ = 0), the two components of the
Stokes vector of the emerged light are

I± =
I ± Q

2
, Q± =

±I + Q

2
, I± = ±Q±. (21)

3 Polarimeter with retarder and polarizing
beam splitter

The real transformation of the Stokes parameters is the
product of the retarder and the beam-splitter polarization
matrices:

s± = B(T±
1 , T±

2 , ψ) · A(φ + ψ, τ) · s. (22)

Firstly note that the birefringent optic axis angleψ is
counted from the reference polarization axisx aligned to
the celestial North pole. Therelative rotation angle of the
retarderφ is counted here with respect to the optic axis of
the beam splitter.

Secondly note that the above rotation angles have to be
counted in thesame direction as the polarization angleχ
is reckoned, i.e. anticlockwise in the direction from the ob-
server to the light source.

Since the detector is only able to measure the light inten-
sity I± of the resulting Stokes vectors±, we are interested
only in the first row of the matrix (22), which gives

I±(T±
1 , T±

2 , ψ, φ, τ) = A± · I ± B± · P (ψ, φ, τ), (23)

where the polarization modulation function

P (ψ, φ, τ) = Qa0 + Ua1 + V a2 (24)

is the linear combination of the StokesQUV as seen in the
expanded form:

P (ψ, φ, τ) = V sin 2φ sin τ+
(

Q cos(2φ + 2ψ)+U sin(2φ + 2ψ)
)

cos 2φ+
(

Q sin(2φ + 2ψ)−U cos(2φ + 2ψ)
)

sin 2φ cos τ.

(25)

A similar result for retarder and polarizer used in ellipsom-
etry is given in Landi Degl’Innocenti & Landolfi (2004,
p. 19), note the opposite sign ofφ − ψ and the absolute
value ofφ.

For the polarimeter with no retarder present withτ =
φ = 0, the polarization modulation function becomes

P (ψ, 0, 0) = Q cos 2ψ + U sin 2ψ. (26)
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Then, for the half-wave retarder withτ = 180◦ we have

P (ψ, φ, 180) = Q cos(4φ+2ψ)+U sin(4φ+2ψ) (27)

and for the quarter-wave retarder withτ = 90◦ the last term
in (25) vanishes and we have

P (ψ, φ, 90) = V sin 2φ+
(

Q cos(2φ + 2ψ) + U sin(2φ + 2ψ)
)

cos 2φ.
(28)

This can be decomposed into

P (ψ, φ, 90) =
1

2

(

P (ψ, 0, 0) + P (ψ, φ, 180)
)

+ V sin 2φ

as the halved sum of the two polarization modulation func-
tionsP for polarimeters withτ = 0 andτ = 180◦, plus the
circular polarizationV modulation term.

3.1 Combination of normalized intensities

The intensity of the lightI± from each of two polarized
beams transmitted through a spectrograph and recorded
on the detector is subjected to numerous multiplicative
transformations (guiding, fiber transmission, attenuation on
échelle, optical vignetting, detector response) described by
f±, so that the stellarJ± and the respective continuumJ±

c

fluxes are recorded as

J± = f±I± and J±
c = f±I±c . (29)

The intensitiesr± normalized to un-polarized continuum
(I±c = A±Ic) become

r± =
J±

J±
c

=
I±

I±c
=

A±I ± B±P

A±Ic

=

I

Ic

± F± · P

Ic

= i ± F±p

(30)

where the relative transmittance ratio is as before
F± = B±/A±. We now denote all continuum normalized
Stokes intensities withsmall letters, i.e.i = I/Ic and the
polarization modulation function (24) becomes

p =
P (ψ, φ, τ)

Ic

= qa0 + ua1 + va2. (31)

The sums and the differenced of the two normalized inten-
sities are






s = r+ + r− = 2 · i + (F+ − F−) · p

d = r+ − r− = (F+ + F−) · p.
(32)

If we denotes1 andd1 when the modulation functionp1 is
obtained at one angle, ands2 andd2 for p2 at another angle,
then their combinations become:






s1 + s2 = 4 · i + (F+ − F−) · (p1 + p2)

s1 − s2 = (F+ − F−) · (p1 − p2)
(33)

and






d1 + d2 = (F+ + F−) · (p1 + p2)

d1 − d2 = (F+ + F−) · (p1 − p2).
(34)

The derived Stokes parametersq, u, or v are always scaled
down by the transmission factorsF+ + F− which can
be also wavelength dependent. Normalized Stokes inten-
sity i = I/Ic may have a cross-talk with the correspond-
ing Stokes parameter if the latter are derived from the sum
p1 + p2. It is useful to note that






















s1 + s2 = 4 · i +
F+ − F−

F+ + F−
· (d1 + d2)

s1 − s2 =
F+ − F−

F+ + F−
· (d1 − d2).

(35)

3.2 An ideal polarizing beam-splitter

In case of symmetric transmission of the two polarized
beamsT1 = T±

1 andT2 = T±
2 , the relative transmission

coefficient becomes

F = F± =
T1 − T2

T1 + T2

. (36)

In ideal caseT2 = 0, henceF = 1. The above combinations
of the continuum normalized intensities from two polarized
beams obtained at two angles of the polarization elements
become more simplified:






s1 + s2 = 4 · i

s1 − s2 = 0
(37)

and






d1 + d2 = 2F · (p1 + p2)

d1 − d2 = 2F · (p1 − p2).
(38)

For most of the commercially available polarizing
beam-splitters designed on the principle of double refrac-
tion (e.g. calcite polarizers or Wollaston prism), the extinc-
tion ratioT2/T1 is of the order of10−5–10−6 (Bennet 1995;
Halle 2011) and can be considered as the ‘ideal’ polarizers.

3.3 The Foster prism

The Foster prism (or more precisely the polarizing beam-
splitting Glan-Thompson prism) is designed on the princi-
ple of the total internal reflection of the ordinary beam (hav-
ing a larger refractive index) from the interface layer be-
tween two calcite blocks, while the extraordinary beam with
the smaller refractive index is transmitted directly through
the two blocks. The tricky part, though, is the refractive in-
dex matching adhesive between the two blocks to minimize
the transmission losses of the extraordinary beam. Any de-
viations of the refractive index of the adhesive from that of
the extraordinary beam results in a back reflection of the
beam which then undergoes on the same optical path as
the ordinary beam, so that the reflected beam becomes el-
liptically polarized (a phase difference is introduced dueto
differences in the optical paths of the two beams). Further-
more, the multiple beam interference occurs on the plane-
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Fig. 2 (online colour at: www.an-journal.org) Fresnel lossesL
in percent in the Foster prism for acrylic and BK7 (scaled down by
10) adhesives on the interface between two calcite blocks with the
thickness of the gap 10µm.

parallel interface between the calcite blocks resulting in
the ripples of the transmission peaks of the extraordinary
beam. The minimum of the transmission corresponds to
the maximum of the back reflection and contamination of
the ordinary beam at certain wavelengths. It seems to our
knowledge that the effect of multiple beam interference on
the beam-splitter interface layer has not been noticed or
considered in the past. An effect of the similar nature of
wavelength-dependent phase delay due to multiple beam in-
terference on the retarder plate acting also as a weak polar-
ized was described by Semel (2003) and Clarke (2005).

There are no direct measurements available of the Fres-
nel losses for commercial polarizing beam-splitters and it
is not possible to model it because proprietary adhesives
are used in most cases. There are some indications that
the reflected ordinary beam is ‘heavily contaminated’ by
the extraordinary beam (Metz 1984; Bennet 1995; Goodrich
1991; Halle 2011). The latter indicate that it may be of the
order of few percent for a polarizing beam splitter.

In Ilyin et al. (2011) we present a solution for the op-
timal adhesive (acrylic matching liquid) and its modeling
of the Fresnel transmission for a custom designed Foster
prism in order to minimize the effect of beam contamina-
tion which would be of the order of 0.2–0.02% for the opti-
cal wavelength range. For any other adhesive solution with
refractive index mismatch (BK7 matching liquid), the back
reflection increases up to 2.5–1.5% over the optical wave-
length range. The latter can be used as a proxy for pro-
prietary adhesives used in commercially available polariz-
ing beam-splitters. Fig. 2 shows the modeling of the Fresnel
lossesL modulated by the multiple beam interference (Born
& Wolf 2002, p. 362) for above two types of Foster prism
interfaces where the transmissions on the entrance and exit
surfaces are taken into account, as well as on the additional
deflection prism.

In the following, we derive the relative transmittance for
the extraordinary (“+”) and ordinary (“−”) beams. Here we
neglect the transmission losses of the two rays at the en-
trance and exit surfaces, the difference in absorption due to
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Fig. 3 (online colour at: www.an-journal.org) Fragment of the
previous picture showing the shape of the transmittance profile for
the two adhesives of the interface layer.

optical path lengths, and the absorption on the interface lay-
ers of the calcite and deflection prisms. The straight-through
extraordinary beam,T+

1 = 1−L, of the incident intensity is
transmitted along the reference polarization axisx oriented
along the optic axis of the calcite prism and nothing is added
T+

2 = 0 along axisy (again neglecting calcite prism manu-
facturing imperfections with the extinction ratio of the order
of 10−6, Bennet 1995, p. 3.15). For the ordinary beam with
the total internal reflection at the interface layer, the maxi-
mal transmission along axisy is T−

1 = 1, and the residual
intensityT−

2 = L along axisx comes from the multiple
beam interference of the extraordinary beam:







T+
1 = 1 − L

T+
2 = 0







T−
2 = L

T−
1 = 1.

(39)

The sum and the difference of the relative transmittances for
two polarized beams become























F+ + F− =
2

1 + L
≃ 2 (1 − L)

F+ − F− =
2L

1 + L
≃ 2L.

(40)

The sum and the difference of the two continuum normal-
ized intensities are























s = r+ + r− = 2 · i +
2L

1 + L
· p

d = r+ − r− =
2

1 + L
· p,

(41)

i.e. the normalized intensity profile is always contaminated
by a small fraction of the polarization profile StokesQ, U ,
or V . The combination of sumss1 ands2, and differences
d1 and d2 of the continuum normalized intensities of the
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two polarized beams obtained at two different angles of the
polarization elements (e.g. retarder) are:






















s1 + s2 = 4 · i +
2L

1 + L
· (p1 + p2)

s1 − s2 =
2L

1 + L
· (p1 − p2)

(42)

and






















d1 + d2 =
2

1 + L
· (p1 + p2)

d1 − d2 =
2

1 + L
· (p1 − p2).

(43)

Note that for the Foster prism we have
s1 − s2 = L · (d1 − d2). (44)

3.3.1 Polarization interference on the interface layer

The optical interference on the interface layer has little or
second order effect on the normalized Stokesi intensity pro-
file if the sum of the polarization modulation function at two
anglesp1 + p2 is small (42). On the other hand, it causes
modulation (43) of the derived StokesQUV parameters by
the value of1 − L versus wavelength as shown in Fig. 3
for the interface layer thickness of 10µm. The larger the
thickness, the shorter the distance between the interference
fringes.

The free spectral range of the optical interference on a
layer with thicknessh with refractive indexn at wavelength
λ and incident angleθ is

∆λFSR =
λ2

2nh cos θ
. (45)

The free spectral range of theéchelle spectrograph at the
blaze wavelengthλ of the spectral orderk is

∆ΛFSR ≃ Λ1

k2
(46)

whereΛ1 = kλ is the blaze wavelength of the first spectral
order. The distance between the interference fringes is equal
to the length of spectral orders (∆λFSR = ∆ΛFSR) if the
thickness is

h =
Λ1

2n cos θ
. (47)

For an R4échelle grating with 31.6 grooves/mm we have
Λ1 = 61.4 µm (the case of PEPSI (Strassmeier 2008) and
HARPS (Snik 2011) spectropolarimeters), the refractive in-
dexn = 1.5, and for the incidence angle90◦ − α = 67.5◦

(whereα = 22.5◦ is the apex angle of the Foster prism),
the thickness of the adhesive layer ish = 53 µm. Thus,
for a typical thickness of the interface layer of 10µm, the
interval between successive maxima is spanning over five
échelle orders.

Since the reflectivity on the interface layer is rather
small, the reflective finesse, defined as the ratio of the dis-
tance between successive peaks and the FWHM of the peaks
(at 50% transmittance), is less than one, i.e. the transmission
peaks are heavily overlapped and have a shape of the cosine
function (Born & Wolf 2002, p. 364).

4 Error propagation in the polarization
vector

As for now, we considered the effect of finite transmissions
in the polarizing beam-splitter on the cross-talk between
StokesI andQUV . Here we are considering the effect of
misalignment and deviation of the angles of the polarization
elements which may result in the mutual cross-talk between
StokesQ, U andV .

The polarization modulation functionP (ψ, φ, τ) in (25)
depends onψ being the orientation of the polarizing beam-
splitter optic axis along the reference azimuthal axisx, φ as
the orientation of the fast axis of the retarder with respectto
the optic axis of the beam-splitter, andτ as the phase delay
angle of the retarder. In the Taylor expansion of the function
over its three angles we retain here the following terms:

P (ψ + ∆ψ, φ + ∆φ, τ + ∆τ) = P (ψ, φ, τ)+

∂P

∂φ
· ∆φ +

∂2P

∂φ2
· ∆φ2

2
+

∂P

∂τ
· ∆τ+

∂2P

∂τ2
· ∆τ2

2
+

∂2P

∂φ∂τ
· ∆φ∆τ +

∂P

∂ψ
· ∆ψ.

(48)

By using this expansion, we analyze in the following the er-
ror propagation in the polarization modulation function and
its effect on the derived Stokes parameters as a function of
deviations in polarization element angles for three differ-
ent configuration of polarimeters: with no retarder, and with
half and quarter-wave retarders. The deviation in the angles
are mostly due to wavelength dependent chromatic effects
in retardation angle of the retarder, change in orientationof
its fast axis with wavelength or misalignment, and misalign-
ment of the optic axis of the beam-splitter with respect to the
reference polarization axis.

4.1 A polarimeter with polarizing beam-splitter and
no retarder

For a polarimeter with no retarder, i.e.τ = φ = 0, the
polarization modulation function (26) for the beam-splitter
has the simplest form:

P (ψ, 0, 0) = Q cos 2ψ + U sin 2ψ (49)

so that










P0 = −P90 = Q + U · 2∆ψ

P45 = −P135 = U − Q · 2∆ψ,
(50)

i.e. Q andU are known up to the uncertainty in the beam-
splitter orientation angle∆ψ. The StokesQ or U can be
obtained just in two exposures if the relative transmission
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8 Ilyin: Second-order error propagation in the Mueller matrix of a spectropolarimeter

differenceF+ − F− in (32) is small and the cross-talk be-
tween StokesI andQ or U can be neglected. Otherwise a
combination of two angles separated by90◦ must be used:






















P0 + P90 = P45 + P135 = 0

P0 − P90 = 2 (Q + U · 2∆ψ)

P45 − P135 = 2 (U − Q · 2∆ψ)

(51)

which results in the combinations of sumss and differences
d of the continuum normalized intensities of the two polar-
ized beams obtained at the two angles:


















s0 + s90 = s45 + s135 = 4 · i

s0 − s90 = 2 (F+ − F−) · (q + u · 2∆ψ)

s45 − s135 = 2 (F+ − F−) · (u − q · 2∆ψ)

(52)

and


















d0 + d90 = d45 + d135 = 0

d0 − d90 = 2 (F+ + F−) · (q + u · 2∆ψ)

d45 − d135 = 2 (F+ + F−) · (u − q · 2∆ψ).

(53)

The first line in (52) gives continuum-normalized Stokes
I free of cross-talk and the last two lines in (53) give
continuum-normalizedQ andU scaled by the relative trans-
mission factors. The other lines are given for completeness.

4.2 A polarimeter with half-wave retarder and
polarizing beam-splitter

A polarimeter with a half-wave retarderτ = 180◦ in front of
the polarizing beam-splitter allows to measure only linearly
polarized light. Its polarization modulation function (27) is

P (ψ, φ, 180) = Q cos(4φ + 2ψ) + U sin(4φ + 2ψ). (54)

Although the functionP is periodic withφ = 90◦, the
terms in the error expansion (48) are not. Useful to note
that the rotation of the beam-splitter by±90◦ results in the
sign reverse of the StokesQ andU : P (ψ ± 90, φ, 180) =
−P (ψ, φ, 180). From (4) we derive computer-generated
combinations of the modulation function for two different
angles of the half-wave retarderφ and these are given in
(55) where all multiples forQ, U , andV are combined in
three columns. The first part of the table determines Stokes
Q and the second part StokesU .

The combination of two angles of the half-wave retarder
separated by45◦, (P0 − P45) and(P45 − P90) determines
StokesQ co-added with its linear cross-talk term∆φ over
U and the term∆τ over V . The contamination ofQ by
V can not be negligible in the case of non-zero retardation
error ∆τ and strong StokesV which can be of order of a
magnitude larger thanQ. For the retardation error of, e.g.,
1◦ ≃ 2%, the StokesQ profile is contaminated by 1% ofV ,
and in caseV = 10×Q at a specific wavelength of the line

profile, the value ofQ will be distorted by 10% of its own
amplitude.

It should be noted that if we co-add(P0−P45) and(P0+
P45), then the cross-talk term∆τ in V for P0 vanishes, i.e.
it comes solely from the second angleP45. The difference
of these two angles, aimed to cancel out the residual terms,
does not work in this case and introduces additional cross-
talk terms instead.

The other combination of the retarder angles separated
by 90◦, (P0 + P90) and (P45 + P135), have similar error
budget inU , but no cross-talk withV at all. However, this
benefit has two disadvantages: firstly, the sum of two con-
tinuum normalized intensities is sensitive to small errorsof
the continuum fit (opposite to the intensity difference when
these misfits can mutually be canceled out) and, secondly as
before, has cross-talk between StokesI andQ when the rel-
ative transmission differenceF+ −F− of the beam-splitter
in (32) is not negligible (i.e. for the 1% case, the normalized
Stokesi is contaminated by 1% ofq).

The error budget in StokesU at the second half of the
table is rather similar to that of theQ: the two combinations
of the retarder angles separated by45◦ have a linear cross-
talk term∆φ overQ, a linear term∆τ overV for (P67.5 −
P112.5), and the negligible quadratic term∆φ∆τ overV for
(P22.5 − P67.5).

As before, the combination with an angle separation by
90◦, (P22.5 + P112.5) and(P67.5 + P157.5), has no residual
cross-talk inV , but as the sum of normalized intensities has
the same potential disadvantages as discussed in the case of
Q.

All residual combinations of two angles we shall call the
residual spectrum as it reflects the amplitude of the devia-
tions in the angles of the polarization elements. The com-
bination, e.g.(P45 − P135), is the scaled down replica of
StokesV by a factor∆τ .

It is worth to mention that any other combinations of an-
gles, like separated by30◦ in order to obtainQ andU only
in three exposures, would lead to a heavily contaminated
series of un-reducible residuals.

4.3 A polarimeter with quarter-wave retarder and
polarizing beam-splitter

For the quarter-wave retarder withτ = 90◦ the polarization
modulation function is given in (28). Similarly to the previ-
ous section, we derive combinations of the modulation func-
tion for two different angles of the quarter-wave retarderφ
which are given in (56) where all multiples forQ, U , andV
are combined in three columns.

The combination of two angles(P45 − P135) is ideal to
determine StokesV since it retains only second order terms
in V and first order terms inQ andU . The sum(P0 + P90)
determines StokesQ but retains the first order terms inU .
For the combinations of angles separated by45◦, we have
√

2 (P45 − P135)=(P22.5−P112.5) + (P67.5−P157.5),
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P1 ± P2 2Q 2U 2V

P0 − P45 +1 − 8 · ∆φ2 − 0.25 · ∆τ2 +4 · ∆φ + 2 · ∆ψ +0.5 · ∆τ − ∆φ∆τ

P0 + P45 +0.25 · ∆τ2 −0.5 · ∆τ − ∆φ∆τ

P45 − P90 −1 + 8 · ∆φ2 + 0.25 · ∆τ2 −4 · ∆φ − 2 · ∆ψ −0.5 · ∆τ − ∆φ∆τ

P45 + P90 +0.25 · ∆τ2 −0.5 · ∆τ + ∆φ∆τ

P0 − P90 −2 · ∆φ∆τ

P0 + P90 +1 − 8 · ∆φ2 +4 · ∆φ + 2 · ∆ψ

P45 − P135 −∆τ

P45 + P135 −1 + 8 · ∆φ2 + 0.5 · ∆τ2 −4 · ∆φ − 2 · ∆ψ

P22.5 − P67.5 −4 · ∆φ − 2 · ∆ψ +1 − 8 · ∆φ2 − 0.25 · ∆τ2 −
√

2 · ∆φ∆τ

P22.5 + P67.5 +0.25 · ∆τ2 −
√

2/2 · ∆τ

P67.5 − P112.5 +4 · ∆φ + 2 · ∆ψ −1 + 8 · ∆φ2 + 0.25 · ∆τ2 −
√

2/2 · ∆τ

P67.5 + P112.5 +0.25 · ∆τ2 +
√

2 · ∆φ∆τ

P22.5 − P112.5

√
2 · (−0.5 · ∆τ − ∆φ∆τ)

P22.5 + P112.5 −4 · ∆φ + 0.25 · ∆τ2 − 2 · ∆ψ +1 − 8 · ∆φ2 − 0.25 · ∆τ2

P67.5 − P157.5

√
2 · (−0.5 · ∆τ + ∆φ∆τ)

P67.5 + P157.5 +4 · ∆φ + 0.25 · ∆τ2 + 2 · ∆ψ −1 + 8 · ∆φ2 + 0.25 · ∆τ2

(55)

P1 ± P2 2Q 2U 2V

P0 − P90 +2 · ∆φ

P0 + P90 +1 − 4 · ∆φ2 +2 · ∆φ + 2 · ∆φ∆τ + 2 · ∆ψ

P45 − P135 +1 − 2 · ∆φ2 − 0.5 · ∆τ2

P45 + P135 +4 · ∆φ2 − ∆τ −2 · ∆φ − 2 · ∆φ∆τ

P22.5 − P112.5

√
2 · (+0.5 + ∆φ − ∆φ2 − 0.25 · ∆τ2)

P22.5 + P112.5 +0.5 − 2 · ∆φ (1 + ∆τ) +0.5 − 4 · ∆φ2 + 0.5 · ∆τ + ∆ψ

−0.5 · ∆τ − ∆ψ

P67.5 − P157.5

√
2 · (+0.5 − ∆φ − ∆φ2 − 0.25 · ∆τ2)

P67.5 + P157.5 +0.5 + 2 · ∆φ (1 + ∆τ) −0.5 + 4 · ∆φ2 − 0.5 · ∆τ + ∆ψ

−0.5 · ∆τ + ∆ψ

(56)







































(P22.5 − P112.5) − (P67.5 − P157.5) = V · 4
√

2 · ∆φ (a)

(P22.5 − P112.5) + (P67.5 − P157.5) = V · 2
√

2 · (1 − 2 · ∆φ2 − 0.5 · ∆τ2) (b)

(P22.5 + P112.5) − (P67.5 + P157.5) = U · 2 (1 − 8 · ∆φ2 + ∆τ) + Q · 4 (−2 · ∆φ (1 + ∆τ) − ∆ψ) (c)

(P22.5 + P112.5) + (P67.5 + P157.5) = Q · 2 (1 − ∆τ) + U · 4 · ∆ψ (d).

(57)
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10 Ilyin: Second-order error propagation in the Mueller matrix of a spectropolarimeter

which leads to the combination of four angles of the quarter-
wave retarder that can be used to determine all Stokes pa-
rametersQUV in four exposures (57). However, the simul-
taneous mode has two drawbacks. Firstly, it uses the sums
of the differences

∑

dk in (34) of the normalized intensi-
ties of the two polarized spectra (e.g. to deriveQ) which
makes it rather sensitive to any continuum errors in the po-
larized spectra (contrary to the differences where the contin-
uum errors are mutually canceled out). Secondly, the polar-
ization modulation function (28) with the angles separated
by 45◦ has half reduced modulation amplitude inQ andU
as compared with any other combinations of two measure-
ments (e.g.P45 − P135). In the following, we consider the
statistical error budget for the simultaneousQUV mode.

4.3.1 Statistical error budget in simultaneousQUV

mode

Suppose that the signal-to-noise ratio (S/N) of the two po-
larized spectraR± are equal. The S/N of the continuum nor-
malized Stokesquv, as the inverse of the standard deviation
in this case, obtained from two full- modulation polariza-
tion exposures, e.g. (P45 − P135) for the quarter-wave or
half-wave retarders, isRquv = 2 · R±. For the half mod-
ulation amplitude (simultaneous mode) in (57), the S/N is
Rqu =

√
2 · R± andRv = 2 · R±.

To obtain all Stokes parametersquv in the separate
mode, six exposures are needed in total to measure each of
the Stokes parameters with two different angles of the po-
larimeter (V with the quarter-wave retarder,QU with the
half-wave retarder or with no-retarder. The resulting S/N
valuesRquv for example are listed in the first row of the
table below (58). In the simultaneous mode with only four
exposures of the same or different duration, the S/N inV is
always

√
2 larger than inQU as outlined in the last three

rows of (58).

Exposure R± Rv Rqu

6 × 10 min 100 200 200

4 × 10 min 100 200 141

4 × 20 min 141 282 200

4 × 15 min 122 244 172

(58)

5 Polarimetric calibration

Any polarimetric calibration involves measurements of the
two polarized-beam intensities in the spectrograph with re-
spect to the angle of the polarization elements (e.g. retarder)
as the response to the incident light of the known polariza-
tion state. The non-linear polarization modulation function
(25) with a number of unknown parameters, i.e. angles of
the polarization elements, is subsequently fit to the mea-
sured response function. The incident light of the known po-
larization state is typically produced with a continuum light

source transmitted through a calibration element (a linear
polarized or a retarder). Since the exact polarization state of
the calibration element may not be exactly known at a given
wavelength, its Stokes vector can be determined as a free pa-
rameter. For the continuum light source the total intensityin
each polarized beams has to be accurately measured, which
is affected by the transmission factors in the spectrograph
as follows:

– Vignetting on the slit and/or fiber entrance due to im-
perfect adjustment or de-centering the polarized beams
together with the chromatic shift of the beams due to
dispersion of the polarizing beam-splitter, as well as an-
gular or spatial precession of the beams (wobbling) due
to rotation of the polarized elements.

– Difference in the transmission factors of the two fibers
rendering the two polarized beams to the spectrograph.
Furthermore, the difference may change with the tem-
poral spatial orientation of the fibers and may have a
hysteresis.

– Attenuation of the polarized light on théechelle grat-
ing depending on the orientation of the polarized ellipse
with respected to théechelle grooves in case the two
linearly polarized beams enter the spectrograph, or the
fibers which have a polarization dispersion.

The intensity of the two polarized beams from the beam-
splitter I±, and these measured in the spectrographJ±,
are attenuated by the transmission parametersf± for each
beam, so that

J± = f± · I±. (59)

Themeasured relative difference of the polarized beams be-
comes

r =
J+ − J−

J+ + J−
=

f + R

1 + fR
, (60)

where the relative difference of the beams and the relative
transmission parameter in the spectrograph are

R =
I+ − I−

I+ + I−
and f =

f+ − f−

f+ + f−
. (61)

The intensity of the light at the exit of the beam-splitter
(23) is

I± = A±I ± B±P, (62)

so that the relative difference of these two beams becomes

R =
F0 + pF

1 + pF1

, (63)

where the intensity-normalized modulation functionp =
P/I = qa0 + ua1 + va2 and

F0 =
A+ − A−

A+ + A−
, F1 =

B+ − B−

A+ + A−
, F =

B+ + B−

A+ + A−
.

In case of the Foster prism (40) we have
R = p · (1 − L) − L. In case of equal polarization
transmissionA = A± and B = B±, we simply have
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R = p · F , so that for the latter case the measured relative
difference of the two polarized beams

r =
J+ − J−

J+ + J−
=

f + Fp

1 + fFp
. (64)

Since the polarization state of the calibration element
may not be exactly known, it can be included as a free pa-
rameter to the polarization modulation function (25). By us-
ing (2) for the normalized Stokes vector, we can replaceq,
u, andv by the azimuthal angleχ and ellipticityβ:

p=(cos 2γ cos 2φ + sin 2γ sin 2φ cos τ) cos 2β+

sin 2φ sin τ sin 2β,
(65)

whereγ = φ + ψ − χ. The relative difference (64) of the
measured intensities

r(f, F, ψ,∆φ + φ′, τ, χ, β;φ′) (66)

is a function of the following unknown parameters: the rel-
ative transmissions in the spectrographf and in the beam-
splitterF , the beam-splitter orientationψ, the retarder axis
zero offset∆φ with respect to the beam-splitter axis, the re-
tardation angleτ , and the azimuthal axisχ and ellipticity
β of the polarization ellipse of the calibration element. The
function is changing versusφ′ as the actual position of the
retarder. Most of the unknown parameters are dependent on
wavelength.

Since some of the unknown parameters are correlated
with each other, only a subset of parameters can be de-
termined at one time depending on the configuration of
the polarization elements. The nonlinear least-squares fit
(Levenberg-Marquardt method, Press et al. 1992) of the rel-
ative difference function (64) to its measurements as a func-
tion of the retarder angleφ is used.

Some specific cases of the polarization elements config-
urations are outlined in the following:

– For unpolarized light withq = u = v = p = 0 as
the calibration light, the relative difference function at
any angle of the retarder isr = f . Ideally, it must be
constant without showing any variations versus retarder
angle.

– For the polarimeter configuration with no retarderτ =
φ = 0 and the linearly polarized lightβ = 0 as the cal-
ibration light source, we havep = cos 2(ψ − χ). Rota-
tion of the calibration polarizer with the azimuthal angle
χ allows to derive both transmission parametersf and
F from the fit to the measured modulation function.

– For the circularly polarized calibration light source with
β = 45◦ and χ = 0, and the polarimeter with the
quarter-wave retarder in the beam, the modulation func-
tion isp = sin 2φ sin τ . The retarder angleφ = ∆φ+φ′

(unknown zero offset plus actual retarder orientation)
and the retardation angleτ are fully correlated. Hence,
this mode is not allowing to deriveτ but only∆φ andf
for the knownτ . Also note the interplay betweencos τ
andF in (65).

– For the linearly polarized calibration source (β = 0) and
the polarimeter with the quarter and half-wave retarders
in the beam allows to determine most of the unknown
parameters:τ , ∆φ, andf . The modulation function re-
duces top = cos 2γ cos 2φ + sin 2γ sin 2φ cos τ . Since
the retarder angleφ is correlated with the azimuthal an-
gle χ in γ, any misalignment offset in the polarization
plane of the calibration source with respect to the beam-
splitter optic axis results an erroneous offset of the re-
tarder initial position∆φ.

– The last unknown parameter is the azimuthal angleψ
of the polarization beam-splitter which cannot be cali-
brated internally with the polarization elements and has
to be aligned externally by using two spatially separated
polarized beams with respect to the great circle passing
through the light source and the North celestial pole.

5.1 The use of polarimetric calibration

Once the polarimetric calibration parameters∆ψ, ∆φ, and
∆τ are obtained as a function of wavelength, the next ques-
tion would be how to use them for accurate reduction of the
polarized stellar spectra in order to remove the cross-talk
between Stokes parameters at each wavelength pixel.

Primarily, the polarimetric calibration is served in or-
der to make a proper alignment of the polarization elements
in the initial setup, specifically, the azimuthal angle of the
whole polarimeterψ with respect to the celestial pole, and
the retarder optic axis orientationφ with respect to the optic
axis of the polarizing beam-splitter.

In order to take into consideration all deviations of these
angles (including retardation error∆τ ) during data reduc-
tion of polarized stellar spectra, one would need to solve a
simple system of linear Eqs. (55) and (56) with respect to
unknown StokesQ, U , andV for each wavelength pixel.
However, the main problem is that all these Stokes param-
eters must be measured quasi-simultaneously and with ade-
quate signal-to-noise ratio in order to obtain the meaningful
solution.

5.2 Polarimetric self-calibration reduction of spectra

Another practical solution is to fit the polarization modu-
lation function (25) to the continuum normalized polarized
spectra obtained at different angles of the quarter-wave re-
tarder (57) in the simultaneousQUV mode. If all the cal-
ibration parameters are known in advance, the unknown
Stokes parametersQUV can be easily obtained for each
wavelength pixel from a linear least-squares fit to the po-
larized spectra.

The same applies to the half-wave retarder mode (55)
with the angles separated by90◦, e.g. (P0 + P90) and
(P22.5 + P112.5), where no terms with StokesV are present
and the cross-talk betweenQ andU is excluded with the
known deviation of the retarder angle∆φ (by neglecting
quadratic terms and∆ψ).
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12 Ilyin: Second-order error propagation in the Mueller matrix of a spectropolarimeter

As the next step of further improvement and complica-
tion, the retarder optic axis orientation error,∆φ, can be set
as a free parameter with a slow variation versus wavelength.
This requires a non-linear least-squares fit of the modula-
tion function to the whole matrix of polarized spectra at dif-
ferent retarder angles for all wavelength pixels. This leads
to a large block-diagonal design matrix with the first few
rows occupied by the parametrization function elements of
∆φ (e.g. coefficients of the Chebyshev polynomials). Given
the large size of the resulting matrix of normal equations,
the problem cannot be efficiently solved with the conve-
nient Cholesky factorization in any reasonable computation
time even after block-diagonal matrix storage and opera-
tional optimization. Hence, iterative methods must be used
in this case, e.g. LSQR (Paige & Saunders 1982) which is
based upon conjugate gradients method as applied to the
least-squares problem.

The advantage of this approach is that it excludes from
the fit the cross-talk between Stokes parameters induced by
the retarder axis angle variations∆φ (see Sect. 7.2 for the
results). The other calibration parameters∆τ and∆ψ can-
not be used as free parameters in the fit (as discussed in
Sect. 5), because it requires the light to be linearly polar-
ized.

6 Ratio of the polarized spectra

Semel et al. (1993) suggested a method which would elim-
inate the uncertainty introduced by the imperfect flat field
correction for the CCD pixel-to-pixel noise. The method
seems to be working perfectly for solar polarimetric obser-
vations (Bianda et al. 1998) and was extensively used for the
extraction of stellar polarized spectra (Donati et al. 1999;
Keller 2002, p. 340; Bagnulo et al. 2009). In the following
we again reassess the accuracy of the method.

Let the function which describes the pixel-to-pixel sen-
sitivity variations be denoted byg± for the area on the CCD
occupied by the two polarized beams with the measured in-
tensitiesJ±. The transmission parameters for the two po-
larized beams shall bef±

k , wherek = 1, 2 is the expo-
sure number for the two angles of the polarization elements.
Then

J±
k = g±f±

k · I±k = g±f±
k · (A±I ± B±Pk). (67)

In order to spare unnecessary complications with the
differential transmission factors of the beam-splitter, we set
them equalF = F± = B±/A±. Hence the ratio of the four
polarized beams with the gain factorsg± eliminated is

r =
J+

1

J−
1

· J−
2

J+
2

= f · (1 − F 2p1p2) + F (p1 − p2)

(1 − F 2p1p2) − F (p1 − p2)
, (68)

where the relative transmission ratio for all four beams and
the normalized Stokes parameters are

f =
f+
1

f−
1

· f−
2

f+
2

and pk =
Pk

I
. (69)

In general, the relative transmissionf may have devia-
tions from unity depending on the spectrograph setup, and
the guiding and seeing condition between two exposures.
Suppose that the relative ratio of the polarized beams is nor-
malized to the smoothed curve fitted tof , i.e. r̃ = r/f̃ , so
that we can replacer with r̃ and setf = 1.

The resulting un-reducible expression for the difference
of the two normalized Stokes parameters is

p1 − p2 =
1

F
· r̃ − 1

r̃ + 1
· (1 − F 2p1p2). (70)

In case the amplitudes of the normalized Stokes param-
eter are small,p1p2 ≪ 1, and can be neglected, then the
difference in the normalized modulation function is

p1 − p2 =
1

F
· r̃ − 1

r̃ + 1
(71)

which gives an estimate of the respective Stokes parameter.
An attempt to include higher orders of non-linear equation
expansions (70) was made in Bianda et al. (1998). Naturally,
for the amplitude of the signal, e.g.v = p1 = p2 = 10%
the error1/(1 − F 2p1p2) of the Stokes parameter estimate
is about 1%. For smaller amplitudes it becomes indeed neg-
ligible.

7 Polarization performance of two
instruments

In this section we show some practical implications of the
polarimetric error propagation as described before. We use
spectra of the same star obtained with two different instru-
ments: the HARPS polarimeter (Snik et al. 2011; Piskunov
et al. 2011) at the ESO 3.6 m telescope, and the SOFIN
polarimeter at the 2.56 m NOT (described in the follow-
ing section). The HARPS polarimeter consists of two ex-
changeable superachromatic PMMA quarter and half-wave
retarders (Samoylov et al. 2004) on a rotary stage in front
of the Foster prism fixed with respect to two entrance fibers
of the spectrograph. The whole setup is located in theF/8
converging beam of the Cassegrain focus of the telescope.

7.1 The SOFIN spectropolarimeter

SOFIN is the high-resolutiońechelle spectrograph (Tuomi-
nen et al. 1999) mounted at the Cassegrain focus of the
2.56 m Nordic Optical Telescope (NOT). An optical cam-
era with 1 m focal length provides the resolving power of
about 80 000 with the entrance slit size of0.5′′. Spectra are
recorded on a Loral2048× 2048× 15µm CCD which pro-
vides a limited wavelength coverage at the selected spectral
range totaling in 24 double polarized orders having about
45Å in length at 5500̊A.

The spectropolarimeter is a modified replica of the de-
vice described in Plachinda & Tarasova (1999). It consists
of a rotating quarter-wave plate and a fixed polarization
beam splitter situated in front of the entrance slit of the spec-
trograph in the convergingF/11 beam from the telescope.
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Fig. 4 (online colour at: www.an-journal.org) Comparison of the StokesV/Ic for the Ap starγ Equ obtained with HARPS (lower
panel) and SOFIN (upper panel).

The superachromatic (optimized for 4000–6800Å)
wave-plate of Pancharatnam design consists of five
stretched PMMA acrylic films of half and quarter-wave
zero-order retarders oriented at certain angles with respect
to each other and laminated between two MgF2 AR coated
glass windows as described and manufactured by Samoylov
et al. (2004). The retarder is situated on a rotary stage and
turned by a stepper motor with a resolution of15′. The op-
tic axis of the retarder is oriented by45◦ with respect to the
optic axis of the polarization beam splitter as the initial zero
position. The retarder is rotating in the same direction as the
azimuthal polarization axis is reckoned, i.e. clockwise inthe
direction of the light propagation (see Sect. 3).

The polarization beam splitter is a calcite plate with its
entrance surface cut at45◦ with respect to the optic axis
of the uniaxial crystal providing a wavelength dependent
double refraction of the two orthogonally polarized beams
aligned along the entrance slit of the spectrograph. A cus-
tom made plate manufactured by B. Halle Nachfl. GmbH
has an image separation of4.6′′ at 5500Å and provides
sufficient separation of the doubled spectral orders up to
7000Å. Since there is no aperture stop between two the po-
larized beams on the slit, the separation between orders is
a trade-off between the seeing quality at the NOT and the
number of spectral orders in oneéchelle image. A worse-
than-average seeing may induce a polarization cross-talk
between two partially overlapped polarized spectra in the
redéchelle orders.

Neither the retarder nor the calcite plate located in the
convergingF/11 beam produce any sensible detectable op-

tical fringes in a wide range of́echelle orders, which would
be manifested as a linear trend of the interference frequency
peaks versus spectral order number. In the original configu-
ration with an additional quarter-wave plate after the beam
splitter (to act as a depolarizer in order to minimize linearly
polarized light attenuation on théechelle grating), the opti-
cal fringes were clearly detectable but were eliminated by a
slight tilt of the polarimeter along the slit in cross-dispersion
direction by half of theF/11 cone angle.

Before 2005 the polarimeter was used in a single beam
mode due to insufficient spatial separation of the polarized
beams, i.e. each of two polarized beams was exposured one
after the other and their wavelength accuracy was based
upon ThAr calibration made before and after each exposure.
The new cross-dispersion prism installed in 2005 allows si-
multaneous registration of the two polarized beams in one
exposure.

7.2 Polarimetric performance in comparison

The well-known rapidly oscillating, chemically peculiar
(CP) starγ Equ (HD 201601, A9p, V=4.7) has a longitu-
dinal magnetic field strength of around−1100 G (Hubrig
et al. 2004) with a period over about 90 years (Leroy et
al. 1994; Bychkov at al. 2006). Together with its slowest
rotation among CP stars,v sin i ≈ 10 km/s, makes it a fa-
vorite object for any kind of polarimetric calibrations.

SOFIN spectra were obtained in August 2006, and
HARPS spectra in July 2011. The StokesV/Ic spectra are
shown in Fig. 4 where the difference in the line depth are
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Fig. 5 (online colour at: www.an-journal.org) Comparison of the StokesQ/Ic andU/Ic for the Ap starγ Equ obtained with HARPS
in HWP and QWP modes (two lower spectra) and SOFIN in QWP mode (upperspectrum).

due to the difference in the spectral resolving powers for
HARPS (110 000) and SOFIN (80 000). The difference in
the signal-to-noise ratio is due to an about 50% higher
throughput of SOFIN than HARPS after reduction to the
same exposure time, resolving power, telescope size, zenith
distance, and spectral region.

In Fig. 5, we demonstrate the application of the simulta-
neousQUV mode (Sect. 4.3.1) where the polarized Stokes

QU and V spectra are obtained with the quarter-wave
plate retarder (QWP). The linearly polarizedQU spectra
were subsequently obtained with HARPS with the half-
wave plane retarder (HWP) for comparison. This compar-
ison shows that the main features inQU are well repro-
duced in the QWP mode but a longer integration is needed
to reach the same S/N as in the single HWP spectrum due to
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Fig. 6 (online colour at: www.an-journal.org) The residual spectra for HARPS (lower) and SOFIN (upper) overplotted with Stokes
V/Ic. The residual spectrumV/Ic · ∆φ from (57a) is shown as the more noisy spectrum and scaled up 10 times in amplitude to match
V/Ic.

Fig. 7 The LSD profiles of StokesV/Ic (left) and residual
V/Ic · ∆τ (right) for HARPS obtained in HWP mode (55) with
the retarder angle separated by45◦. The LSD profile calculations
are courtesy of T. Carroll (AIP).

the half amplitude in the polarization modulation function
(Sect. 4.3.1).

The amplitude and its effect on the cross-talk betweenQ
andU due to a wavelength dependent optic axis misalign-
ment of the retarder∆φ is shown in Fig. 6. We used the
QWP mode to derive the residual spectrum ofV/Ic · ∆φ
from (57a). The cross-talk term∆φ betweenQ andU is
present in (57c) and (57d) in the QWP mode, as well as in
almost every equation of (55) in the HWP mode.

The effect of the retardation error∆τ on the cross-talk
is somewhat less pronounced and requires a higher signal-
to-noise ratio to be seen. To do that, we computed LSD pro-
files (Donati et al. 1997) of the StokesV/Ic and the residual
spectrumV/Ic ·∆τ from HARPS spectra obtained in HWP
mode with the retarder angles separated by45◦: (P0 + P45)
and (P22.5 + P67.5) in (55) and shown in Fig. 7. The am-

plitude of the residual spectrum is about 1% of the Stokes
V/Ic, which implies that∆τ averaged over a broad spec-
tral range is about0.5◦. This residual spectrum is co-added
with the factor1/2 to Q/Ic or with

√
2/2 to U/Ic in all

HWP mode combinations of angles, except the three com-
binations(P0 + P90), (P45 + P135) and(P22.5 − P67.5) in
(55). In case ofQU is 1% ofV in amplitude, the cross-talk
betweenQU andV is about 50%, i.e. up to one half of the
amplitude inQU comes fromV .

At the moment we were not able to detect any signature
of the polarization interference (44) in HARPS spectra over
a broad spectral range with the use of LSD profiles. Per-
haps, this is due to a pickup-fence effect of the selected line
list, moderate signal-to-noise ratio, and the broad modula-
tion functionL.

In Fig. 8, we show the global fit of the polarization mod-
ulation function (24) to the spectra obtained in the simulta-
neousQUV mode (57) with HARPS and SOFIN. The resid-
ual spectrum in StokesU/Ic was formed as the difference
between the global fits with and without inclusion of the
retarder optic axis orientationφ as the free parameter. The
residual spectra are scaled up seven times and plotted ver-
sus StokesQ/Ic. The residual spectrum (with the factor two
removed) consists of the termQ/Ic · 4∆φ from (57c). The
contribution ofQ to U is in this example about 3.5%. The
global fit of the SOFIN spectra with the retarder optic axis
orientationφ included into the fit gives the same estimate
for the angle as obtained from the polarimetric calibration
in the same wavelength region.
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Fig. 8 (online colour at: www.an-journal.org) The residual spectra for HARPS (lower) and SOFIN (upper) overplotted with Stokes
Q/Ic. The residual spectra, scaled seven times, are the differences between the two global fits of the polarization modulation function
with the retarder optic axis orientationφ included or excluded from the fit. The spectra obtained in the simultaneousQUV mode with
the quarter-wave retarder.

7.3 Conclusions

The aim of this work is to outline the optimal ways to mini-
mize the cross-talk between Stokes parameters. We focus on
stellar spectra obtained with a dual beam polarimeter with
various configurations of the retarder element.

We showed in Sect. 4.3 that StokesV can be obtained
with the quarter-wave retarder with no cross-talk terms from
StokesQU and its accuracy limited only by the quadratic
terms of the deviations of the polarization elements angles.

The optimal configuration to measure StokesQU is de-
scribed in Sect. 4.1 for a polarimeter with no retarder but
the rotating polarizing beam-splitter fixed with respect to
the entrance fibers (as laid out in Ilyin et al. 2011 for the
PEPSI spectropolarimeter).

The polarimetric configuration with the half-wave re-
tarder Sect. 4.2 can achieve high accuracy of the StokesQU
free of contribution from StokesV for the retarder angles
separated by90◦ with a possible drawback of the contin-
uum normalization uncertainties introduced to the Stokes
spectra.

Finally, the simultaneous StokesQUV mode with the
use of the quarter-wave retarder advocated in Sect. 4.3 at
(57), has the advantage of a homogeneous data set from
which all Stokes parameters can be derived together with
the wavelength dependent misalignment of the retarder op-
tic axis. We employ a global non-linear fit of the polariza-
tion modulation function to the observed spectra at different

angles of the retarder (Sect. 5.2). Some possible uncertain-
ties of the continuum normalization for StokesQ and half
modulation amplitude for StokesQU with respect toV are
disadvantages of the method.
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